Le principe fondamental de la Théorie des Contraintes (TOC), tel que décrit par Eliyahu Goldratt dans Le But; la définition d’un goulot (goulet d’étranglement) ou d’une contrainte; pourquoi la seule façon d’améliorer un système est d’améliorer sa contrainte
Pourquoi les optima locaux et l’optimum global sont mutuellement exclusifs; pourquoi une entreprise où tout le monde est occupé à travailler est terriblement inefficace; toute amélioration qui ne touche pas la contrainte est une illusion
Une brève histoire de la façon dont les principes fondamentaux du flux se sont manifestés au fil du temps; l’importance de limiter les travaux en cours; la proposition de Goldratt de mécanismes basés sur le temps pour limiter les travaux en cours
Drum-Buffer-Rope (DBR) – Tambour-Tampon-Corde (TTC) – l’application originale de la TOC pour la fabrication; pourquoi aucune entreprise ne devrait prendre plus de travail que son goulot ne peut traiter; pour exploiter pleinement une partie donnée d’un système, toutes les autres parties doivent être surcapacitaires
Une étude de cas montrant comment, chez Microsoft, une équipe d’ingénierie logicielle a utilisé Drum-Buffer-Rope (DBR) – Tambour-Tampon-Corde (TTC) – pour améliorer considérablement sa productivité et son débit
Un bref aperçu de la méthode d’amélioration continue qui fait le coeur de la TOC; comment les systèmes dynamiques fournissent un retour pour identifier correctement la contrainte; comment la TOC propose d’améliorer les systèmes complexes et dynamiques
Étape 1 des 5 Étapes de Focalisation (5FS 1/5); comment trouver la contrainte organisationnelle dans le travail intellectuel; les politiques et les règles vues comme les contraintes les plus préjudiciables (et les plus faciles à changer); expérimenter pour trouver les contraintes
Étape 2 des 5 Étapes de Focalisation (5FS 2/5); comment optimiser la contrainte organisationnelle dans le travail intellectuel; la TOC vue comme système de ciblage et de mise en oeuvre pour toutes les autres méthodes d’amélioration
Étape 3 des 5 Étapes de Focalisation (5FS 3/5); comment la subordination ramène au premier plan les aspects psychologiques et politiques des organisations; pourquoi notre système de mesure stimule les productivités locales, mais pas la productivité globale
Étape 4 des 5 Étapes de Focalisation (5FS 4/5); pourquoi serait-il malavisé de sauter directement à l’Étape 4 en cherchant à appliquer les principes du flux; techniques pratiques pour élever la contrainte
Application de la TOC à la gestion de projet; comment les estimations de durées à fort indice de confiance entraînent des marges de sécurité massives; pourquoi les estimations de durées du travail intellectuel tendent le plus souvent à se dilater, et rarement à se contracter
Dans l’article précédent, je décris comment le goût généralisé des entreprises pour les optima locaux favorise le surmenage et l’épuisement professionnel des salariés, ainsi qu’une baisse de flux et de rentabilité du résultat net.
Avant de nous pencher sur la solution que la TOC propose, examinons brièvement l’histoire du flux, en commençant par Henry Ford.
De nos jours on se souvient surtout de Ford pour son Modèle T et ses aphorismes à l’emporte-pièce, mais sa véritable contribution au monde fut la découverte des 4 Principes Fondamentaux du Flux:
Optimisation du Flux: L’objectif principal des opérations est d’améliorer le Flux (également nommé Throughput, défini comme la somme du chiffre d’affaires moins les coûts complètement variables).
Non-Production: La clé pour améliorer le Flux consiste à établir un mécanisme pratique pour déterminer quand il convient de NE PAS produire.
Abolition des Optima Locaux: Les efficiences locales (plus connues de nos jours sous le vocable «optima locaux») doivent être abolies.
Processus de Focalisation: L’amélioration doit être guidée par un processus de focalisation, afin d’être orientée en permanence vers l’endroit où elle pourra faire la plus grande différence.
A l’époque, alors que les concepts de lignes de production et d’assemblage de Ford balaient le monde, séduisant industrie après industrie par leurs performances sans précédent, tous les experts s’accordent à dire que seules de très grandes quantités de produits identiques sauraient justifier une ligne à part entière.
Tous ? Non ! Un ingénieur Japonais du nom de Taichii Ohno résiste encore et toujours à cette idée envahissante…
Ce dont Ohno se rend compte, c’est que les principes du flux sont génériques. Le génie du système de Ford ne tient pas seulement à sa vitesse et à son uniformité, mais à la nouvelle façon qu’il a de maîtriser l’empilement des travaux en cours, ce grand ennemi du flux. En connectant les services par tapis roulant et en limitant strictement la quantité d’espace qui les sépare, les travaux en cours n’ont tout simplement pas la possibilité de s’empiler. Quant aux ressources situées en amont, elles ne peuvent littéralement pas produire plus vite que les ressources situées en aval, car dans une ligne ainsi interconnectée, tout problème rencontré déclenche instantanément l’arrêt total de l’ensemble de la chaîne.
Ohno fait face à une situation très différente de celle de Ford: son marché japonais exige quant à lui de petites quantités d’une variété de modèles de voitures. Il ne peut donc pas se permettre de consacrer tout un équipement à une seule grande série d’un seul modèle, car chaque machine doit travailler sur un panaché de différentes pièces. Et c’est à ce point de la réflexion que la plupart des petits fabricants abandonnent leurs recherches: «C’est impossible à faire !».
Mais Ohno s’aperçoit qu’il parvient à maîtriser les travaux en cours d’une manière différente – en limitant directement le nombre de pièces autorisé à s’empiler entre les services. Sur la base de cette réalisation, il conçoit le système Kanban. Chaque conteneur rempli de pièces est accompagné d’une petite carte («kanban» en japonais) précisant le nombre de pièces assignées à ce conteneur. À mesure que le conteneur se déplace vers l’avant, la carte est renvoyée vers l’arrière, signalant à l’opération précédente de reproduire exactement ce même nombre de pièces, et pas une de plus. C’est là toute la puissance de Kanban: pouvoir dire à chaque travailleur quand il convient de NE PAS produire. Ohno venait de gagner son pari: transposer à son propre contexte le principe de Non-Production (le 2ème des 4 Principes Fondamentaux du Flux énoncés par Ford) en déplaçant le mécanisme de régulation, des tapis roulants aux pièces.
Ohno fait maintenant face à un autre défi: comment focaliser l’amélioration continue (le 4ème Principe Fondamental du Flux) ? Pour Ohno, la difficulté est que l’équipement n’étant pas dédié à une seule grande série d’un seul modèle, il est presque impossible d’identifier les problèmes qui compromettent le flux, par la seule observation. Il trouve alors la solution par une analogie marine: «les Récifs et la Marée». En réduisant progressivement la taille du lot de fabrication, on simule un lent retrait du niveau de la mer. Tant que le flux demeure ininterrompu, on continue de resserrer lentement les paramètres opérationnels. A force de se retirer, cette «marée descendante» finit par révéler les «récifs» (les obstacles au flux) tapis sous la surface. Dès que l’un d’entre eux affleure, des techniques spéciales sont alors mises en oeuvre pour baliser, identifier et réparer définitivement la cause racine de la perturbation. Ce sont ces techniques qui ont ensuite donné corps au Mouvement Lean – connu à l’origine sous le nom de «Toyotisme» ou «Toyota Production System» (TPS).
Ce sont les gains de productivité libérés par ce système qui ont, pour ainsi dire, donné naissance au monde moderne. Des voitures aux savons en passant par les téléviseurs et les produits pharmaceutiques… jusqu’à l’appareil usiné avec précision que vous utilisez en ce moment même pour lire ces lignes.
Mais le système de production Toyota – popularisé sous le nom de Just-In-Time Manufacturing (JIT) ou «Fabrication Juste-à-Temps» – n’est pas parfait. Ce n’est qu’une application – adaptée à une époque et à un lieu particuliers – de principes autrement plus fondamentaux. Déjà au cours de son développement, ses failles commençaient à apparaître.
Le problème majeur du TPS-Lean est d’exiger la stabilité et la prévisibilité, tant dans l’environnement interne (la production) que dans l’environnement externe (le marché).
En interne, on doit maîtriser étroitement tous les facteurs susceptibles d’affecter la variabilité et ce, jusqu’à plusieurs décimales. C’est le secret inavouable du Lean: il prend un temps incroyable à mettre en œuvre. 9 mois par ligne de production est la recommandation officielle – plutôt optimiste – du Toyota Supplier Support Center (le Centre de Support aux Fournisseurs de Toyota). En réalité, il a fallu parfois jusqu’à 10 ans pour implémenter le système dans la totalité d’une entreprise.
Dans l’environnement externe, l’exigence de prévisibilité est, bien évidemment, encore plus problématique. Malgré la relative stabilité du flux de commandes chez Toyota, il a fallu établir un mode d’acceptation des commandes (et de promesse des livraisons) qui limite le changement d’assortiment d’un mois sur l’autre. La plupart des entreprises ne sont pas en mesure d’exiger des conditions aussi confortables de la part de leurs fournisseurs et clients. Et le pire dans tout ça, c’est que la production n’a aucun contrôle sur cette source d’instabilité, qui vient non pas de la façon dont les produits sont fabriqués, mais de la manière dont ils sont commercialisés et vendus.
Telle est la situation dans laquelle Eliyahu Goldratt met les pieds en 1984, avec la publication de son livre Le But. Physicien de formation «Pour mieux apprendre au monde à penser», Goldratt joue à bien des égards le même rôle que son prédécesseur Ohno quelques décennies plus tôt, en traduisant les principes fondamentaux du flux vers un nouveau paradigme.
Ce dont Goldratt se rend compte, c’est que le TEMPS est un mécanisme plus efficace que les limites physiques (tapis roulants ou pièces) pour limiter les travaux en cours. Il propose donc de contenir les travaux en cours non pas en s’affairant sur des lignes, des conteneurs et des pièces, mais en limitant plus directement et en tout point du système, la quantité GLOBALE de travail. Sa méthode utilise 3 points de levier temporels: la cadence de traitement du goulot, le positionnement stratégique de tampons (compris comme étant des amortisseurs ou «buffers»), et le signal de «libération des matériaux». Ces points de levier correspondent aux 3 éléments principaux du système de production manufacturière conçu par Goldratt: le Drum-Buffer-Rope (DBR) – Tambour-Tampon-Corde (TTC) en français.
En s’appuyant sur le mécanisme du temps, les principes du flux deviennent applicables bien au-delà du monde de la fabrication – aux environnements projets, à la vente et au marketing, au commerce de détail et aux services, et même au développement de logiciels.
Dans tous ces domaines créatifs, le travail ne suit pas le flux séquentiel et linéaire d’une chaîne d’assemblage, mais bien plutôt le flux encore plus rigide, et encore plus linéaire, du temps.
Cet éclairage est la clé pour bien comprendre à quel point ces idées – nées dans le cambouis des usines manufacturières – sont tout aussi pertinentes pour le travail intellectuel de notre époque.
Dans l’article précédent, je raconte comment Eliyahu Goldratt a présenté le Temps comme un nouveau mécanisme pour limiter le travail en cours, en utilisant une nouvelle méthode de sa conception, appelée Drum-Buffer-Rope (DBR) – Tambour-Tampon-Corde (TTC).
Penchons-nous donc sur la manière dont le DBR se propose de réparer la situation que nous avions laissée à la fin de l’article 102:
Comme vous vous en souvenez, le rouge indique que tout le monde dans l’entreprise est surchargé et surmené. Plus le service Ingénierie (qui est le goulot de ce système) reçoit du travail en provenance de tout le monde, moins les ingénieurs ont de temps pour concrètement faire les choses. Moins ils produisent, plus les nouveaux projets commencés par tous les autres «en attendant» sont nombreux, envoyant ainsi encore plus de travail au goulot, dans un cercle vicieux.
La question à laquelle DBR cherche à répondre est: «Comment devons-nous opérer le système pour atteindre son débit maximal ?»
Faisons une analogie: imaginez une autoroute vide dont nous essayons de maximiser le flux. A chaque voiture supplémentaire ajoutée, le débit augmente, puisque toutes les voitures peuvent circuler à la même vitesse sans se ralentir les unes les autres:
Mais cela ne fonctionne que jusqu’à un certain point. Au bout d’un moment, les voitures entrantes vont commencer à interagir et à se ralentir les unes les autres. Le débit atteindra un pic, puis chutera rapidement. Peut-être avez-vous remarqué ce point de bascule en conduisant sur l’autoroute – toutes les voitures sont espacées uniformément et s’écoulent à un bon rythme, puis surgie de nulle part, une poignée d’autres plonge le système en déséquilibre, et le trafic s’enraye:
Notre question est donc la suivante: «Quel est le nombre optimal de voitures à autoriser sur l’autoroute, pour atteindre son flux maximal ?»
Vue d’en haut comme ceci, la réponse semble évidente:
Le nombre optimal de voitures entrantes est égal à celui que le tronçon le plus étroit et le plus lent de l’autoroute, peut laisser passer de façon régulière.
DBR est conçu pour assurer ce nombre optimal: la cadence de traitement du goulot est le «Tambour» qui bat la mesure du rythme auquel le système tout entier devrait travailler (tel le batteur d’une harmonie à pied, qui aide l’ensemble du groupe à conserver une marche synchronisée). La «Corde» est le signal qui «tire» un nouvel objet de travail dans le tuyau, seulement lorsqu’un objet est traité par le goulot (elle tient le même rôle que celui joué précédemment par les tapis roulants de Ford, puis par les cartes kanban de Ohno).
Il reste un dernier élément à ajouter, et c’est le «Tampon». Les tampons en général sont un élément important de nombreux systèmes: la paroi d’une cellule est un tampon contre l’environnement extérieur; les amortisseurs d’une voiture sont un tampon contre les bosses de la route; les 2 heures que vous vous donnez pour arriver à l’aéroport sont un tampon contre les retards imprévus en chemin. Toute partie d’un système qui a besoin d’être protégée contre l’incertitude, les variations, ou les perturbations d’un environnement, tout en continuant d’interagir avec cet environnement, nécessite une certaine forme de tampon.
Dans le domaine de la production manufacturière, la nécessité d’un tampon devient évidente lorsque l’on se souvient que la capacité de l’ensemble d’un système est égale à la capacité de son goulot. En effet, cela signifie que lorsqu’une machine en panne (ou une personne salariée en congé maladie) est située au goulot, son «coût» dépasse le temps perdu à ce seul poste de travail. C’est le taux de carburation – ou indice d’octane – de L’ENSEMBLE DE L’ENTREPRISE qui est compromis. La moindre minute perdue au goulot doit être considérée comme une minute perdue pour L’ENSEMBLE DU SYSTÈME.
Par conséquent, nous devons nous assurer que le goulot ne tourne jamais à vide et ce, quelle qu’en soit la raison. La seule façon d’y parvenir est de stocker du travail en cours dans une file d’attente alimentant l’entrée du goulot, de sorte qu’il aura toujours du grain à moudre, même si le flux venait à être temporairement interrompu en amont.
C’est précisément la finalité du Tampon – protéger le goulot contre les perturbations dans le flux de travail amont, aplanir les variations et prélever des tranches de travail de la file d’attente, selon la quantité et la vitesse précisément requises pour une efficacité maximale:
La mise en oeuvre des principes du flux requiert l’adoption d’une certaine philosophie de gestion, à savoir:
«Aucune entreprise ne devrait prendre plus de travail que son goulot ne peut traiter.»
Le rôle du management est de déterminer la capacité du goulot, de la remplir, puis de refuser tout lancement de nouveau projet avant que l’un des projets en cours ne soit terminé.
En d’autres termes:
«Pour exploiter pleinement une partie donnée d’un système (le goulot), toutes les autres parties doivent être surcapacitaires.»
Ceci est en contradiction directe avec la règle universelle du lieu de travail moderne: «Restez Tous Occupés», autrement dite «Utilisez Toute la Capacité Disponible».
C’est la raison pour laquelle Goldratt a désigné cette maxime de surcapacité comme représentant probablement, à elle seule, le plus important changement de paradigme requis de la part du management pour adopter la Théorie des Contraintes.
La conséquence de l’ignorance de ces principes est familière à de nombreuses organisations. Si une personne révèle ou même suggère qu’elle n’a pas assez de choses à faire, nous lui TROUVONS quelque chose à faire. Si nous ne trouvons rien à lui faire faire, nous nous en séparons. Donc, bien sûr, personne n’a jamais «rien à faire». Toute capacité excédentaire qui pourrait se créer est cachée, masquée dans le brouillard du travail de remplissage, la nature ayant horreur du vide. Et ensuite, lorsqu’une véritable opportunité de travail à valeur ajoutée se manifeste, tout le monde est «occupé».
En voyant le personnel à court de temps, la direction en conclut que le problème doit relever d’un «manque de capacité» et embauche encore plus de personnes, qui finissent par faire encore plus de travail de remplissage. A défaut de comprendre la cause racine du problème, ces nouvelles recrues ne font qu’aggraver le problème, manifestant ainsi la loi de Brooks:
«Ajouter des personnes à un projet en retard, ne fait que le ralentir.»
Ironiquement, c’est en empêchant les personnes d’être surcapacitaires que l’entreprise se retrouve avec considérablement plus de capacité excédentaire que jamais.
La puissance du DBR est qu’il ne s’embarrasse pas de graphiques complexes, ne repose pas sur une surveillance systématique, ni ne détaille précisément la manière dont le travail doit être effectué. Au lieu de cela, il se concentre sur la dynamique du système – en actionnant 3 leviers temporels et leurs boucles de rétroaction – afin d’équilibrer le flux, plutôt que la capacité.